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LElTER TO THE EDITOR 

Random resistor networks as a theory of interacting Bose 
and Fermi fields: I. Effective medium treatment of 
percolation 

J P Carton 
Service de Physique du Solide et de Resonance Magnetique, CEN Saclay, 91191 Gif-sur- 
Yvette, Cedex, France 

Received 4 March 1983 

Abstract. The problem of random resistor networks is formulated with the help of 
functional integrals over commuting and anticommuting variables and leads to interacting 
Bose and Fermi fields. In this letter the effective medium approximation is derived 
following a variational principle. 

In this letter a new approach to percolation in random resistor networks is presented. 
So far the existing methods for dealing with this problem up to renormalisation 
treatment are: 

(i) equivalence with a random s-states Potts model with s + 0 (Dasgupta et a1 
1978); 

(ii) Stephen’s approach (Stephen 1978). 
They turn out to be quite intricate and rapidly difficult to handle beyond simple 

cases. From this point of view the present line seems to be more promising. In what 
follows the formalism is set up and it will be shown how this method allows us to 
derive an effective medium theory (EMT) as a ‘classical’ variational theory. It is based 
on the use of integrals over commuting and anticommuting variables which recently 
gave some results for disordered systems (Bohr and Efetov 1982, de Dominicis et a1 
1980). 

Consider a Bravais lattice with z nearest neighbours, each bond (i-j) bearing a 
resistor of conductance qj. Kirchhoff’s law at node i gives 

1 (Ti.( vi - V.) = -Ii = B,.V. 11 I 
i i 

for the current flowing from the lattice. The relevant quantity for the study of the 
macroscopic conductance is the voltage response function to a current source between 
r and r’ (see e.g. Lubensky 1978) 

G(r, r’) = (r‘lB-’lr). 

From elementary linear algebra 

G(r, r’) = (det B)-’(rlcom Blr’) = (det B)-’det B(r, r’) 

where the matrix B(r, r’) is obtained from B by suppressing line r and column r’. 
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(det B)-’ is commonly written as a gaussian integral over classical (commuting) fields: 

Let us introduce a Grassman algebra with 2N generators qi and f i  which completely 
anticommute, 

q . - . + f .  1 7 1 1  JTl . = o  9 qiqj + qjqi = 0,  

and an integration symbol over {qi} conventionally defined by 

d q q =  d f f = 1  I I  
(for more details see Berezin (1966)). Then the following representation holds: 

det B = n (dfidqi) exp - C fiBijqj (1) 
l i  ij 

((1) is readily obtained through a diagonalisation of B). 

(1) the contribution of 5 df ,  is -1, so that 
Moreover, since 7: = 0 one sees that if a linear term f ,  is introduced in integral 

I (dfi dqi)f,q,f exp - 1 fiBijqj = -deti% (r,  r ’ ) .  

Consequently G appears as the correlation of a Fermi field in a theory involving both 
Fermi and Bose fields: 

-G(r, r ’ )  = fl -d@i dqi dei dqi)frtlr, e x p - 1  Bij(@iqj +ijivj). (2) I j ( 2 : ,  ij  

In the present case 

1 Bij(cPiqj+fiqj)= 1 rrij[(Qi-(Pj)(qi-cpj)+(t7i-rij)(qi-qj)I  
i j  {i. i) 

where summation is extended to bonds between nearest neighbours. 
By construction the probability law in (2) is automatically normalised to unity, 

which allows an averaging procedure as usual in disorder problems. For example, 
assume that uij = U with probability p and uij = 0 with probability 1 - p ;  then 

where the effective (including interactions) Lagrangian is 

3 = - In [p e x p ( - ~ 4 ~ ~ )  + 1 - p ]  

setting 

4ij = (4i -+ j ) (q i  -qj) + ( f i  - f j ) (q i  - ~ j ) *  

Note that this theory is massless and that one expects for the quasi-particle spectrum 
of the Fermi field a form 

E (k) = k * ( U  + bk * + . . *)  
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where a is related to the macroscopic conductivity X (Lubensky 1978) (in the 
homogeneous case G(k)  - l /uk2) .  The percolation threshold should thus be charac- 
terised by the vanishing of a. 

For some purpose it can be convenient to separate 2’ into free parts 2ZB and 2 ’ ~  
respectively for cp and q and an interaction Lagrangian SI; using anticommutation 
rules one finds 

where 

Aij = (4i -+j)(Vi -vj)* 
The simplest approximation-namely neglecting T1-yields X - p u  and leaves percola- 
tion phenomena aside. One step further is for example to construct a self-consistent 
theory for Z. This will be achieved through a variational method with a trial Lagrangian 
chosen as representing an effective medium: 

The variational free energy 9 as a function of the trial parameters uo and ut, is 

9(uo, CA) =Fo+(2’-2’o)o = -In Tr e-yo+[Tr(2’-2’o)e-yo](Tr 

One readily has 

Fo/N = -ln(uo/uA) +constant, (2 ’0)  = 0, 

which explains why uo = uA cannot be imposed from the beginning. 
To calculate (2’)o it is convenient to introduce a Fourier representation 

ln(1 + x  e-u4) = I dh A ( h )  eiA4 

where x = p / l  - p .  Then 

( 2 ) o  = - C I dh A(A Hexp ih 4ij>o, 

(exp ih 4 i j ) O  = (exp iA [Vi -cpj12)o(eXp ih /T i  - qj12)o. 
{ij) 

From the properties of gaussian laws it is straightforward to evaluate 

(exp ih Icpi - cpjlZ)o = (1 - 2ih/zuA)-’ 

whereas 

(exp ih ( f i  - f j ) (q i  - 7j))O = 1 + iA ( ( f i  - f j ) (qi  -qj))o = 1 - 2ih/zuo 

since {qi,  fj} is an anticommuting set. 
From (3), (4), ( 5 ) ,  (6) one obtains the minimisation equations 

(3) 
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Looking for solutions uo = ah, continuous for uo # 0, one simply has 

= 0, (7) 
1 

1 - 2iA/zuo u o - ~ z u o  J dA A ( A ) + & ~ ~  J dA A(A) 

dA A(A) =In (1 + x )  = -ln(l - p ) ,  

The linear term in uo in (7), i.e. l + f z  ln(1-p), vanishes at p c =  l-e-"'. Close to 
p 0  uo is small 

- m u 0  J dq5 ln(1 + x  e-"') = m(uo/u)I(x) 
0 

and 

As in EMT (Kirkpatrick 1973), uo would be negative for p < p c ,  which is unphysical, 
so that uo = 0 for p < p c ,  and on the other hand 

r o - p  - p c  for p > p c .  

EMT gives p c  = 2/z which is the same as our p c  = 1 -e-'" when z + 00. For p = 1, 
A(A) = -iuS'(A) and the solution of (7) is immediately uo = CY. 

The instability revealed by the existence of a solution uo < 0 suggests the onset of 
a broken symmetry phase when p < p c .  This will be shown in the following. Write 

0 0 
Qi = Q  i+SQi, Ti = 77 i + h i ,  

where {Q? and (777 are values of the fields imposed by external constraints. Integrating 
out the fluctuations {SQ} and (877) through a saddle point method gives the free energy 
(or vertex generating functional) as a function of {Q? and {q?. Choosing 

(4:- cpo)( I Q I  ?-  ( p y )  = A, ( f ? - f ? ) (  I 77, ?-+E, 
one may expand 3' as 

~ ( C P ,  T ) = ~ ( Q O ,  T O ) +  1 Clap@, 3 E p f i p  
{Li) 

where U = (a& - S@j, SQi - SQ,  S f i  - Sf j ,  S q  - Sq). After cumbersome integration over 
SQ and 877 one is left with an expression for the free energy r(A, E) in the so-called 
'one-loop approximation': 

Z l"(A) 
2 ( l ' (A)  ) :A[ ;I r(A,E)= --Z(A)+fln 1+2-A +E- - - l (A)+fln 

where l(A) = ln(p e-cA+ 1 - p ) .  
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The form of (8) is quite general, as a consequence of the required property 

(Icpi-cpj12+177i-77j12)=o. 

It yields 

2 d  
Z=(lim k2e(k))-'=--F(A, 0)l 

k-0 z dA A=& 

where A. is given by 

ar/a& = (d/dA)I"(A& O)(@: - 47) = 0. 

Expanding 

r(A, 0) = ~ z p u A - ( l - p ) ~ A + O ( A ~ )  

one sees that: 

(i) when p > p c  = (1 +z/2)-', cpq-cpy = 0 and Z = ~ ( 1 + 2 / z ) ( p  - p c ) ;  
(ii) when p < p c  the symmetry is spontaneously broken so as to have A. # 0 given 

by (d/dA)r(Ao, 0) = 0 which in turn implies Z = 0 for all p < p c .  
Another peculiar feature is the following: contrary to standard critical phenomena 

the space dimension d does not explicitly appear in r to order one loop; this does 
not allow us to control the validity of the approximation through a Ginzburg criterion. 
Probably it is never exact since it gives for the conductivity the exponent t = 1 whereas 
the classical (Landau) value is known to be t = 3. In that sense the above treatment 
does not deserve the name of 'mean field approximation'. 

In conclusion this method avoids replication, its traps (known and hidden) and 
any kind of analytic continuation. The next step is naturally the renormalisation group 
for which the known tools of quantum field theory are available. On the other hand, 
more complicated situations can be treated in the same fashion: spatially varying 
distribution (e.g. surface effects), crossover around the percolation point for uij = U, 

or U<, percolation with shorts or diodes, 
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